Integrating Smart Drilling Technologies with Real-Time Logging Systems for Maximizing Horizontal Wellbore Placement Precision

Authors

  • Kayode Emmanuel Akinleye Department of Energy & Petroleum Engineering, University of North Dakota, Grand Forks, North Dakota, USA. Author
  • Shereef Olayinka Jinadu Johnson Graduate School of Business, Cornell University, Ithaca NY, USA Author
  • Chinelo Nwaamaka Onwusi Subsurface & Wells Department, Renaissance Energy (Shell), Sub-Saharan Africa. Author
  • Agama Omachi Department of Economics, University of Ibadan, Ibadan Nigeria. Author
  • Onuh Matthew Ijiga Department of Physics, Joseph Sarwaan Tarkaa University, Makurdi, Benue State, Nigeria Author

DOI:

https://doi.org/10.32628/IJSRST2411429

Keywords:

Smart Drilling Technologies, Real-Time Logging Systems, Horizontal Wellbore Placemen, Geosteering and Drilling Optimization

Abstract

The integration of smart drilling technologies with real-time logging systems has revolutionized horizontal wellbore placement by enhancing accuracy, operational efficiency, and decision-making capabilities. As the oil and gas industry explores increasingly complex and unconventional reservoirs, the demand for precise geosteering and real-time subsurface evaluation continues to grow. This paper examines the evolution of smart drilling tools and logging-while-drilling (LWD) systems, emphasizing their combined role in optimizing drilling trajectories. It presents a structured framework for system integration, focusing on bottom hole assemblies equipped with intelligent sensors, real-time data acquisition platforms, and drilling optimization algorithms. Through selected offshore and onshore case studies, the paper highlights practical applications and industry experiences, revealing both the benefits and limitations of current integration models. Challenges such as data latency, environmental constraints, and technical compatibility are critically analyzed. Furthermore, the study explores recent technological advancements, including the use of artificial intelligence, machine learning, and enhanced downhole communication tools. Finally, the research outlines strategic recommendations for industry stakeholders to promote efficient adoption and innovation in smart drilling practices. The findings demonstrate that fully integrated real-time systems not only improve well placement accuracy but also offer long-term value through reduced costs, improved safety, and sustainable hydrocarbon extraction.

📊 Article Downloads

References

Abdalla, O., Khan, F., & Haddara, M. (2020). Application of machine learning in the oil and gas industry. Journal of Petroleum Exploration and Production Technology, 10(3), 889–899.

Al-Mudhafar, W. J., Nasrabadi, H., & Aminian, K. (2021). AI-driven predictive analytics in unconventional well operations. Journal of Petroleum Science and Engineering, 202, 108534.

Al-Mutairi, F., Khalid, A., & Bashir, Y. (2020). Enhancing wellbore positioning through geosteering technologies. Journal of Natural Gas Science and Engineering, 76, 103214. DOI: https://doi.org/10.1016/j.jngse.2020.103214

Atalor, S. I. (2019). Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy ICONIC RESEARCH AND ENGINEERING JOURNALS JUN 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880

Atalor, S. I., Raphael, F. O. & Enyejo, J. O. (2023). Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi : https://doi.org/10.32628/IJSRST23113269 DOI: https://doi.org/10.32628/IJSRST23113269

Azonuche, T. I., & Enyejo, J. O. (2024). Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432 DOI: https://doi.org/10.38124/ijsrmt.v3i8.432

Azonuche, T. I., & Enyejo, J. O. (2024). Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific Research and Modern Technology, 3(6), 57–69. https://doi.org/10.38124/ijsrmt.v3i6.449 DOI: https://doi.org/10.38124/ijsrmt.v3i6.449

Azonuche, T. I., & Enyejo, J. O. (2024). Exploring AI-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448. DOI: https://doi.org/10.38124/ijsrmt.v3i8.448

Boyadjieff, G. (2020). Real-Time Drilling Optimization. Oilfield Review, 32(2), 24–33.

Chatterjee, S., Zabaras, G., & Keller, H. B. (2020). Autonomous drilling systems: A technological review. Energy Reports, 6, 1025–1033.

Garcia, M., Al-Yami, A., & Zhou, H. (2020). Wired drill pipe: A game changer in digital drilling. Journal of Petroleum Technology, 72(5), 34–39.

Gatens, M. (2013). Horizontal Drilling and Completion Technology. Journal of Canadian Petroleum Technology, 52(6), 406–411.

Gomes, A., Jassim, M., & Al-Shammari, M. (2021). Smart drilling and real-time optimization: A new frontier. Journal of Petroleum Exploration and Production Technology, 11, 781–794.

Hashemi, H., Shafiei, A., & Hafez, H. (2021). Real-time optimization using AI-driven models in horizontal drilling. Journal of Petroleum Science and Engineering, 203, 108543.

Idika, C. N., James, U. U., Ijiga, O. M., Okika, N. & Enyejo, L. A, (2024). Secure Routing Algorithms Integrating Zero Trust Edge Computing for Unmanned Aerial Vehicle Networks in Disaster Response Operations International Journal of Scientific Research and Modern Technology, (IJSRMT) Volume 3, Issue 6, https://doi.org/10.38124/ijsrmt.v3i6.635 DOI: https://doi.org/10.38124/ijsrmt.v3i6.635

Idika, C. N., James, U.U, Ijiga, O. M., Enyejo, L. A. (2023). Digital Twin-Enabled Vulnerability Assessment with Zero Trust Policy Enforcement in Smart Manufacturing Cyber-Physical System International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 9, Issue 6 doi : https://doi.org/10.32628/IJSRCSEIT DOI: https://doi.org/10.32628/IJSRCSEIT

Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IOT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 180-199. DOI: https://doi.org/10.30574/wjaets.2024.11.1.0035

Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293. DOI: https://doi.org/10.30574/wjaets.2024.11.1.0058

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression.

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065. DOI: https://doi.org/10.30574/gjeta.2024.18.3.0037

Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.

Igwea, E. U., Peter-Anyebeb, A. C., & Omachic, A. CULTURALLY RESPONSIVE DOMESTIC VIOLENCE INTERVENTION IN FAITH COMMUNITIES: A REVIEW OF TRAUMA-INFORMED, BIBLICALLY INTEGRATED THERAPEUTIC MODELS.

Imoh, P. O. (2023). Impact of Gut Microbiota Modulation on Autism Related Behavioral Outcomes via Metabolomic and Microbiome-Targeted Therapies International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 2, Issue 8, 2023 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494 DOI: https://doi.org/10.38124/ijsrmt.v2i8.494

International Energy Agency (IEA). (2021). Drilling and production in environmentally sensitive areas. Retrieved from https://www.iea.org

Jalali, M., Abbaspour, M., & Saeedfar, A. (2018). Challenges in real-time drilling data acquisition in offshore environments. Journal of Natural Gas Science and Engineering, 54, 335–342.

James, U. U., Idika, C. N., & Enyejo, L. A. (2023). Zero Trust Architecture Leveraging AI-Driven Behavior Analytics for Industrial Control Systems in Energy Distribution Networks, International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 9, Issue 4 doi : https://doi.org/10.32628/CSEIT23564522 DOI: https://doi.org/10.32628/CSEIT23564522

James, U. U., Idika, C. N., Enyejo, L. A., Abiodun, K., & Enyejo, J. O. (2024). Adversarial Attack Detection Using Explainable AI and Generative Models in Real-Time Financial Fraud Monitoring Systems. International Journal of Scientific Research and Modern Technology, 3(12), 142–157. https://doi.org/10.38124/ijsrmt.v3i12.644 DOI: https://doi.org/10.38124/ijsrmt.v3i12.644

Khosravanian, A., & Salehi, S. (2019). Intelligent horizontal well trajectory planning using machine learning. Journal of Natural Gas Science and Engineering, 65, 37–46.

Lake, L. W., Johns, R., Rossen, W. R., & Pope, G. A. (2014). Fundamentals of Enhanced Oil Recovery. Society of Petroleum Engineers. DOI: https://doi.org/10.2118/9781613993286

Ma, Y., Zhang, Y., & Li, H. (2021). Innovations in downhole communication for smart drilling applications. Energy Reports, 7, 5281–5290.

Montgomery, C. T., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. (2005). Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 57(12), 26–32. DOI: https://doi.org/10.2118/1210-0026-JPT

Okoh, O. F., & Omachi, A. EVALUATING THE IMPACT OF VIRTUAL REALITY TRAINING ON WORKFORCE SKILL DEVELOPMENT IN EMERGING ECONOMIES.

Okoh, O. F., & Omachi, A. THE IMPACT OF RENEWABLE ENERGY CONSUMPTION AND ECONOMIC GROWTH IN NIGERIA (1990 TO 2024).

Ononiwu, M., Azonuche, T. I., & Enyejo, J. O. (2023). Exploring Influencer Marketing Among Women Entrepreneurs using Encrypted CRM Analytics and Adaptive Progressive Web App Development. International Journal of Scientific Research and Modern Technology, 2(6), 1–13. https://doi.org/10.38124/ijsrmt.v2i6.562 DOI: https://doi.org/10.38124/ijsrmt.v2i6.562

Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2023). Exploring SAFe Framework Adoption for Autism-Centered Remote Engineering with Secure CI/CD and Containerized Microservices Deployment International Journal of Scientific Research in Science and Technology Volume 10, Issue 6 doi : https://doi.org/10.32628/IJSRST DOI: https://doi.org/10.32628/IJSRST

Ononiwu, M., Azonuche, T. I., Imoh, P. O. & Enyejo, J. O. (2024). Evaluating Blockchain Content Monetization Platforms for Autism-Focused Streaming with Cybersecurity and Scalable Microservice Architectures ICONIC RESEARCH AND ENGINEERING JOURNALS Volume 8 Issue 1

Ononiwu, M., Azonuche, T. I., Okoh, O. F., & Enyejo, J. O. (2023). AI-Driven Predictive Analytics for Customer Retention in E-Commerce Platforms using Real-Time Behavioral Tracking. International Journal of Scientific Research and Modern Technology, 2(8), 17–31. https://doi.org/10.38124/ijsrmt.v2i8.561 DOI: https://doi.org/10.38124/ijsrmt.v2i8.561

Ononiwu, M., Azonuche, T. I., Okoh, O. F.. & Enyejo, J. O. (2023). Machine Learning Approaches for Fraud Detection and Risk Assessment in Mobile Banking Applications and Fintech Solutions International Journal of Scientific Research in Science, Engineering and Technology Volume 10, Issue 4 doi : https://doi.org/10.32628/IJSRSET DOI: https://doi.org/10.32628/IJSRSET

Plumberg, G., McCarthy, B., & Homan, D. (2018). Real-time telemetry advancements in high-speed drilling operations. SPE Drilling & Completion, 33(4), 361–368.

Schlumberger. (2019). Drilling Systems and Services Catalog. Schlumberger Technical Publications.

Song, Q., Wang, X., & Zhang, L. (2019). Advances in telemetry for high-speed drilling communication. Journal of Natural Gas Science and Engineering, 68, 102905.

Tiwari, R., & Sain, K. (2019). Real-time geosteering: A breakthrough in well placement. Petroleum Geoscience Journal, 25(2), 145–152.

Yao, Y., Liu, Y., & Zhang, J. (2020). High-temperature and high-pressure sensors for smart drilling applications. Sensors, 20(11), 3115. https://doi.org/10.3390/s20113115 DOI: https://doi.org/10.3390/s20113115

Zhang, M., Liu, W., & Chen, J. (2021). AI-driven geosteering systems for complex reservoir navigation. Journal of Petroleum Exploration and Production Technology, 11(2), 857–867.

Downloads

Published

18-08-2024

Issue

Section

Research Articles

How to Cite

[1]
Kayode Emmanuel Akinleye, Shereef Olayinka Jinadu, Chinelo Nwaamaka Onwusi, Agama Omachi, and Onuh Matthew Ijiga, “Integrating Smart Drilling Technologies with Real-Time Logging Systems for Maximizing Horizontal Wellbore Placement Precision”, Int J Sci Res Sci Eng Technol, vol. 11, no. 4, pp. 466–484, Aug. 2024, doi: 10.32628/IJSRST2411429.