Holomorphic Extensions of Complex Probability Measures: From Fourier-Stieltjes Transforms to Riemann Surface Applications
DOI:
https://doi.org/10.32628/IJSRSET251364Keywords:
Holomorphic extension, Complex probability measures, Fourier-Stieltjes transforms, Riemann surfaces, Analytic continuation, Complex analysis, Measure theoryAbstract
This systematic and complete work carefully examines the holomorphic extensions of complex probability measures through the perceptive lens of Fourier-Stieltjes transforms and their crucial and deep applications to the complex theory of Riemann surfaces. We derive a system of rigorous theoretical results that are vital for extending complex-valued probability measures from their natural and originally specified domains using the analytic structure that resides intrinsically with their characteristic functions. Our complete and careful treatment covers fundamental existence and uniqueness theorems, also certain convergence results and explicit construction techniques that are needed for the effective creation of holomorphic extensions. We illustrate the intimate and significant relations that exist among complex probability theory and the geometry of Riemann surfaces and show how multi-valued probability functions may actually produce single-valued functions considered on properly crafted Riemann surfaces. Complete and careful proofs of all of our significant results are shown in the paper, including certain extension theorems of a new and original nature and complete and definitive characterizations of singularity structures as well as numerous and miscellaneous applications to quantum probability theory. Using specific and illustrative computational algorithms and careful and specific illustrative examples, we outline the intricate and real-world utility of said extensions across a wide variety of disciplines ranging from mathematical physics and signal processing and demonstrate the compelling research promise of our findings towards unlocking breakthroughs and innovations in pure and applied mathematics.
📊 Article Downloads
References
Ahlfors, L. V. (2010). Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable (3rd ed.). McGraw-Hill.
Beardon, A. F. (1983). The Geometry of Discrete Groups. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-1146-4
Billingsley, P. (1995). Probability and Measure (3rd ed.). John Wiley & Sons.
Briot, C., & Bouquet, J. C. (1875). Theorie des fonctions elliptiques. Gauthier-Villars.
Capinski, M., & Kopp, P. E. (2004). Measure, Integral and Probability (2nd ed.). Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4471-0645-6
Cauchy, A. L. (1825). Mémoire sur les intégrales définies. Mémoires de l'Académie.
Conway, J. B. (1978). Functions of One Complex Variable. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-6313-5
Durrett, R. (2019). Probability: Theory and Examples (5th ed.). Cambridge University Press. DOI: https://doi.org/10.1017/9781108591034
Fei, J., Yeh, C. N., & Gull, E. (2021). Nevanlinna analytical continuation. Physical Review Letters, 126(5), 056402. DOI: https://doi.org/10.1103/PhysRevLett.126.056402
Flanigan, F. J. (1983). Complex Variables: An Introduction. Freeman.
Forster, O. (1991). Lectures on Riemann Surfaces. Springer-Verlag
Gelbaum, B. (1992). Problems in Real and Complex Analysis. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-0925-6
Griffiths, P., & Harris, J. (2016). Principles of Algebraic Geometry. John Wiley & Sons.
Grigoryan, A. (2007). Measure Theory and Probability. Springer-Verlag.
Gunning, R. C. (1966). Lectures in Complex Analysis. Princeton University Press.
Hasebe, T. (2010). Analytic continuations of Fourier and Stieltjes transforms and generalized moments of probability measures. Kyoto University Graduate School of Science. DOI: https://doi.org/10.1007/s10959-011-0344-9
Helson, H., & Lowdenslager, H. (1958). Prediction theory and Fourier series in several variables. Acta Mathematica, 99, 165-202. DOI: https://doi.org/10.1007/BF02392425
Jost, J. (1997). Compact Riemann Surfaces: An Introduction to Contemporary Mathematics. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-03446-0
Koebe, P. (1907). Über die Uniformisierung beliebiger analytischer Kurven. Mathematische Annalen, 67, 145-224. DOI: https://doi.org/10.1007/BF01450180
Lang, S. (1985). Complex Analysis (4th ed.). Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4757-1871-3
McMullen, C. (2000). Complex Analysis on Riemann Surfaces. Harvard University.
Miranda, R. (2017). Algebraic Curves and Riemann Surfaces. American Mathematical Society.
Narasimhan, R. (1973). Several Complex Variables. University of Chicago Press.
Polchinski, J. (1998). String Theory: Volume I. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511618123
Riemann, B. (1857). Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse. Göttingen Dissertation.
Rudin, W. (1987). Real and Complex Analysis (3rd ed.). McGraw-Hill.
Serre, J. P. (1955). Algebraic Groups and Class Fields. Springer-Verlag.
Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta-Function (2nd ed.). Oxford University Press.
Weierstrass, K. (1876). Zur Theorie der Abelschen Funktionen. Journal für die reine und angewandte Mathematik, 89, 246-254.
Whittaker, E. T., & Watson, G. N. (1990). A Course of Modern Analysis (4th ed.). Cambridge University Press.
Yamaguchi, H. (1983). A property of some Fourier-Stieltjes transforms. Pacific Journal of Mathematics, 108(1), 243-256. DOI: https://doi.org/10.2140/pjm.1983.108.243
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.