Computational exploration, Hirshfeld Surface Analysis, Molecular Dynamics Simulation, ADMET Profiles, and Molecular Docking of 3a,8a-Dihydroxy-1-phenyl-1,3, 3a,8a-tetrahydro-indeno[1,2-d] imidazole-2,8-dione
DOI:
https://doi.org/10.32628/IJSRSET2512514Keywords:
Molecular Dynamics Simulations, ADMET, DFT, Hirshfeld Surface, Molecular DockingAbstract
In this work, a detailed study of 3a,8a-tetrahydro-indeno[1,2-d] 3a, 8a-Dihydroxy-1-phenyl-1,3-imidazole-2,8-dione [C16H12N2O4] [NPU] bearing anticarcinogenic effect was examined using quantum computational method. The compound's equilibrium geometry has been derived and examined using the DFT-B3LYP/LANL2DZ approach. FT-IR analysis was employed to recognize the different functional groups, and the outcomes are contrasted with the simulated spectra. Theoretical examination was conducted on the oscillation modes. The electronic characteristics, including HOMO and LUMO energies and the corresponding frontier energy band gap, were determined. Predictions of molecular electrostatic potential surface was carried out to examine the electrophilic and nucleophilic sites. Electrical properties viz. dipole moment, molecular polarizability, and first static hyperpolarizability have been employed to forecast the biological characteristics of the molecule. The analysis of the Hirshfeld surface has been conducted to examine the weak interactions present in the molecules. A molecular dynamics simulation of 100 ns was performed, assessing models through RMSD, RMSF, Rg, PC1-PC2-PLOT metrics, and the MMPBSA/MMGBSA tool was employed for calculating free energy. The proteins 4WNT and 4XRZ have undergone molecular docking analysis with the tile ligand molecule. The drug-likeness and ADMET factors were calculated to examine their medicinal properties.
📊 Article Downloads
References
Mertens, F., Johansson, B., Fioretos, T., & Mitelman, F. (2015). The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer, 15, 371. DOI: https://doi.org/10.1038/nrc3947
Ghalib, R., M., Mehdi, S., H., Hashim, R., Alshahateet, S., F., & Sulaiman, O. (2016). A facile approach for the synthesis of indenoimidazole derivatives and their supramolecular study. J. Chem. Sci. 128, No. 12, , pp. 1841–1847. DOI: https://doi.org/10.1007/s12039-016-1181-2
Sarkarzadeh, H., Miri, R., Firuzi, O., Amini, M., Razzaghi, Asl., N., Edraki, N., and Shafiee, A. (2013). Synthesis and antiproliferative activity evaluation of imidazole-based indeno[1,2-b]quinoline-9,11-dione derivatives. Arch. Pharm. Res. 36, 436. DOI: https://doi.org/10.1007/s12272-013-0032-7
Chatterjie, N., Sinha, B., and Alexander, G., J. (1983). Synthesis and anticonvulsive activity of a N-propylurea-ninhydrin condensation product in mice. Res. Commun. Chem. Pathol. Pharmacol. 39, 333.
Roberts, L., R., Bryans, J., Conlon, K., McMurray, G., Stobie, A., Whitlock, G., A. (2008). Novel 2-imidazoles as potent, selective and CNS penetrant α1A adrenoceptor partial agonists. Bioorg. Med. Chem. Lett. 18, 6437. DOI: https://doi.org/10.1016/j.bmcl.2008.10.066
Frisch, M., J., Trucks, G., W., Schlegel, H., B., Scuseria, G., E., Robb, M., A., Cheeseman, J., R., Montgomery, Jr., J.,A., Vreven, T., Kudin, K., N., Burant, J., C., Millam, J., M., Iyengar, S., S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J., E., P., Hratchian, H., Cross, J., B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., E., Yazyev, O., Austin, A., J., Cammi, R., Pomelli, C., Ochterski, J., W., Ayala, P., Y., Morokuma, K., Voth, G., A., Salvador, P., Dannenberg, J., J., Zakrzewski, V., G., Dapprich, S., Daniels, A., D., Strain, M., C., Farkas, O., Malick, D., K., Rabuck, A., D., Raghavachari, K., Foresman, J., B., Ortiz, J., V., Cui, Q., Baboul, A., G., Clifford, S., Cioslowski, J., Stefanov, B., B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R., L,Fox, D., J., Keith, T., Alâ€Laham, M., A., Peng, C., Y., Nanayakkara, A., Challacombe, M., Gill, P., M., W., Johnson, B., Chen, W., Wong, M., W., Gonzalez, C., & Pople, J., A. (2009). Gaussian 09, revision A. 02, Gaussian, Inc., Wallingford CT.
Becke, A.,D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648. DOI: https://doi.org/10.1063/1.464913
Hohenberg, P., & Kohn, W. (1964). Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis. Phys. Rev. B., 136, 864.
Lee, C., Yang, W., & Parr, R., G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 37, 785. DOI: https://doi.org/10.1103/PhysRevB.37.785
Frisch, A., et al. (2009). Gaussian Inc. GaussView, Version 6.
Jamroz, M., H. (2004). Vibrational Energy Distribution Analysis, VEDA 4 Program, Warsaw, Poland.
Daina, A., Michielin, O., Zoete, V. (2017). SWISSADME online software.
Bisong, E. (2019). Google Colaboratory. Apress, Berkeley, CA. 59–64, 2019. https://doi.org/10.1007/978-1-4842-4470-8_7. DOI: https://doi.org/10.1007/978-1-4842-4470-8_7
Trott, O., & Olson, A., J. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comp. Chem., 31, 455. DOI: https://doi.org/10.1002/jcc.21334
Pople, J., A., Schlegel, H., B., Krishnan, R., Defrees, D., J., Binkley, J., S., Frisch, M., J., et al. (1981). Molecular-Orbital Studies of Vibrational Frequencies. Int. J. Quant. Chem., 20, 269. DOI: https://doi.org/10.1002/qua.560200829
Karabacak, M., Kurt, M., Cinar, M., & Coruh, A. (2009). Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6-methylaniline. Mol. Phys., 107, 253. DOI: https://doi.org/10.1080/00268970902821579
Colthup, N., B., Daly, L., H., & Wiberley, S., E. (1990). In Introduction to Infrared and Raman Spectroscopy (New York: Academic Press).
Chou, K., C. (1984). The Biological Functions of Low-Frequency Phonons. 4. Resonance Effects and Allosteric Transition. Biophys. Chem., 20, 61. DOI: https://doi.org/10.1016/0301-4622(84)80005-8
Frohlich, H. (1988). In Biological Coherence and Response to External Stimuli (Berlin: Springer). DOI: https://doi.org/10.1007/978-3-642-73309-3
Xu, Y., Chu, Q., Chen, D., & Fuentes, A. (2021). HOMO–LUMO Gaps and Molecular Structures of Polycyclic Aromatic Hydrocarbons in Soot Formation. Front. Mech. Eng., 7, 744001. DOI: https://doi.org/10.3389/fmech.2021.744001
Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747. DOI: https://doi.org/10.1126/science.218.4574.747
Fleming, I. (1976). In Frontier Orbitals and Organic Chemical Reactions: John Wiley and Sons, New York.
Sajan, D., Joseph, L., Vijayan, N., & Karabacak, M. (2011). Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of l-histidinium bromide monohydrate: A density functional theory. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 81, 85. DOI: https://doi.org/10.1016/j.saa.2011.05.052
Thomas, R., Mary, Y., S., Resmi, K., S., Narayana, B., Sarojini, S., B., K., Armakovic, S., Armakovic, S., J., Vijayakumar, G., Alsenoy, C., V., & Mohan, B., J. (2019). Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct., 1181, 599. DOI: https://doi.org/10.1016/j.molstruc.2019.01.014
Chattaraj, P., K., Sarkar, U., & Roy., D.,R. (2006). Electrophilicity Index. Chem. Rev., 106, 2065. DOI: https://doi.org/10.1021/cr040109f
Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 43, 3714. DOI: https://doi.org/10.1021/jm000942e
Murugavel, S., Ravikumar, C., Jaabil, G., Alagusundaram, P. (2019). Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel potent human topoisomerase IIα inhibitor. J. Mol. Str., 1176, 729. DOI: https://doi.org/10.1016/j.molstruc.2018.09.010
Veber, D., F., Johnson, S., R., Cheng, H., Y., Smith, B., R., Ward, K., W., & Kopple, K., D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem., 45, 2615. DOI: https://doi.org/10.1021/jm020017n
Zhao, Y., H., Le, J., Abraham, M., H., Hersey, A., Eddershaw, P., J., Luscombe, C., N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., & Platts, J., A. (2001). Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci., 90, 749. DOI: https://doi.org/10.1002/jps.1031
Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sc., 10, 195. DOI: https://doi.org/10.1016/S0928-0987(00)00076-2
Rodić, M., V., Leovac, V, M., Jovanović, L., S., Spasojević, V., Joksović, M., D., Stanojković, T., Matić, I., Z., Vojinović-Ješić, L.,S., & Marković, V. (2016). Synthesis, characterization, cytotoxicity and antiangiogenic activity of copper(II) complexes with 1-adamantoyl hydrazone bearing pyridine rings. Eur. J. Med. Chem., 115, 75. DOI: https://doi.org/10.1016/j.ejmech.2016.03.003
Lipinski, C., A., Lombardo, F., Dominy, B., W., & Feeney, P. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. J. Adv. Drug Deliv. Rev., 23, 3. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1
Lipinski, C., A. (2004). Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol., 1, 337. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007
Gadaleta, D., Vukovic, K., Toma, C., Lavado, G., J., Karmaus, A., L., Mansouri, K., Kleinstreuer, N., C., Benfenati, E., & Roncaglioni, A. (2019). SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J. Cheminf., 11, 58. DOI: https://doi.org/10.1186/s13321-019-0383-2
Ajay, Bemis, G., W., & Murcko, M. A. (1999). Designing Libraries with CNS Activity. J. Med. Chem., 42, 4942. DOI: https://doi.org/10.1021/jm990017w
Kumar, C., P., Raghu, M., S., Prathibha, B., S., Prashanth, M., K., Kanthimathi, G., Kumar, K., Y., Parashuram, L., & Alharthi, F., A. (2021). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorg. Med. Chem. Letters, 44, 128118. DOI: https://doi.org/10.1016/j.bmcl.2021.128118
Spackman, P., R., Turner, M., J., McKinnon, J., J., Wolff, S., K., Grimwood, D., J., Jayatilaka, D., & Spackman, M., A. (2021). Crystal Explorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallography. 54, 1006. DOI: https://doi.org/10.1107/S1600576721002910
Lange, O., F., & Grubmüller, H. (2006). Can Principal Components Yield a Dimension Reduced Description of Protein Dynamics on Long Time Scales? .J. Phys. Chem. B. 11, 22842–22852. DOI: https://doi.org/10.1021/jp062548j
Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., Gioia, L., D. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J. Mol. Graph. Model, 27:889–899. DOI: https://doi.org/10.1016/j.jmgm.2009.01.006
Valdés-Tresanco, M., S., Valdés-Tresanco, M., E., Valiente, P., A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 17, 6281. DOI: https://doi.org/10.1021/acs.jctc.1c00645
Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., & Poroikov, V. (2015). SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics., 31 (12), 2046-2048. DOI: https://doi.org/10.1093/bioinformatics/btv087
http://www.rcsb.org/pdb/explore.do?structureId=4WNT & 4XRZ.
Morris, G., M., Huey, R., Lindstrom, W., Sanner, M., F., Belew, R., K., Goodsell, D., S., & Olson, A., J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 16, 2785. DOI: https://doi.org/10.1002/jcc.21256
Schrödinger, L.; DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol.
Jevtovic, V., Alshamari, A., K., Milenkovic, D., Dimitrić Marković, J., Marković, Z., & Dimić, D. (2023). The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int. J. Mol. Sci., 24, 11910. DOI: https://doi.org/10.3390/ijms241511910
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.