Computational exploration, Hirshfeld Surface Analysis, Molecular Dynamics Simulation, ADMET Profiles, and Molecular Docking of 3a,8a-Dihydroxy-1-phenyl-1,3, 3a,8a-tetrahydro-indeno[1,2-d] imidazole-2,8-dione

Authors

  • Tanveer Hasan Department of Physics, Shia P.G. College, Lucknow, Uttar Pradesh, India Author
  • Raza Murad Ghalib Department of Chemistry, Faculty of Sciences & Arts, Khulais, University of Jeddah, P.O. Box 355, Postal Code 21921 Jeddah, KSA Author
  • Sayed Hasan Mehdi Department of Chemistry, Shia P. G. College, Lucknow, Uttar Pradesh, India Author
  • Pramod Kumar Singh Department of Applied Physics, SMS Institute, Lucknow, Uttar Pradesh, India Author
  • Syed Asad Ali Department of Physics, Shia P.G. College, Lucknow, Uttar Pradesh, India Author
  • Arman Taqvi Department of Zoology, Shia P.G. College, Lucknow, Uttar Pradesh, India Author
  • Nazia Kazmi Department of Zoology, Shia P.G. College, Lucknow, Uttar Pradesh, India Author

DOI:

https://doi.org/10.32628/IJSRSET2512514

Keywords:

Molecular Dynamics Simulations, ADMET, DFT, Hirshfeld Surface, Molecular Docking

Abstract

In this work, a detailed study of 3a,8a-tetrahydro-indeno[1,2-d] 3a, 8a-Dihydroxy-1-phenyl-1,3-imidazole-2,8-dione [C16H12N2O4] [NPU] bearing anticarcinogenic effect was examined using quantum computational method. The compound's equilibrium geometry has been derived and examined using the DFT-B3LYP/LANL2DZ approach. FT-IR analysis was employed to recognize the different functional groups, and the outcomes are contrasted with the simulated spectra. Theoretical examination was conducted on the oscillation modes. The electronic characteristics, including HOMO and LUMO energies and the corresponding frontier energy band gap, were determined. Predictions of molecular electrostatic potential surface was carried out to examine the electrophilic and nucleophilic sites. Electrical properties viz. dipole moment, molecular polarizability, and first static hyperpolarizability have been employed to forecast the biological characteristics of the molecule. The analysis of the Hirshfeld surface has been conducted to examine the weak interactions present in the molecules. A molecular dynamics simulation of 100 ns was performed, assessing models through RMSD, RMSF, Rg, PC1-PC2-PLOT metrics, and the MMPBSA/MMGBSA tool was employed for calculating free energy. The proteins 4WNT and 4XRZ have undergone molecular docking analysis with the tile ligand molecule. The drug-likeness and ADMET factors were calculated to examine their medicinal properties.

📊 Article Downloads

References

Mertens, F., Johansson, B., Fioretos, T., & Mitelman, F. (2015). The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer, 15, 371. DOI: https://doi.org/10.1038/nrc3947

Ghalib, R., M., Mehdi, S., H., Hashim, R., Alshahateet, S., F., & Sulaiman, O. (2016). A facile approach for the synthesis of indenoimidazole derivatives and their supramolecular study. J. Chem. Sci. 128, No. 12, , pp. 1841–1847. DOI: https://doi.org/10.1007/s12039-016-1181-2

Sarkarzadeh, H., Miri, R., Firuzi, O., Amini, M., Razzaghi, Asl., N., Edraki, N., and Shafiee, A. (2013). Synthesis and antiproliferative activity evaluation of imidazole-based indeno[1,2-b]quinoline-9,11-dione derivatives. Arch. Pharm. Res. 36, 436. DOI: https://doi.org/10.1007/s12272-013-0032-7

Chatterjie, N., Sinha, B., and Alexander, G., J. (1983). Synthesis and anticonvulsive activity of a N-propylurea-ninhydrin condensation product in mice. Res. Commun. Chem. Pathol. Pharmacol. 39, 333.

Roberts, L., R., Bryans, J., Conlon, K., McMurray, G., Stobie, A., Whitlock, G., A. (2008). Novel 2-imidazoles as potent, selective and CNS penetrant α1A adrenoceptor partial agonists. Bioorg. Med. Chem. Lett. 18, 6437. DOI: https://doi.org/10.1016/j.bmcl.2008.10.066

Frisch, M., J., Trucks, G., W., Schlegel, H., B., Scuseria, G., E., Robb, M., A., Cheeseman, J., R., Montgomery, Jr., J.,A., Vreven, T., Kudin, K., N., Burant, J., C., Millam, J., M., Iyengar, S., S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J., E., P., Hratchian, H., Cross, J., B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., E., Yazyev, O., Austin, A., J., Cammi, R., Pomelli, C., Ochterski, J., W., Ayala, P., Y., Morokuma, K., Voth, G., A., Salvador, P., Dannenberg, J., J., Zakrzewski, V., G., Dapprich, S., Daniels, A., D., Strain, M., C., Farkas, O., Malick, D., K., Rabuck, A., D., Raghavachari, K., Foresman, J., B., Ortiz, J., V., Cui, Q., Baboul, A., G., Clifford, S., Cioslowski, J., Stefanov, B., B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R., L,Fox, D., J., Keith, T., Alâ€Laham, M., A., Peng, C., Y., Nanayakkara, A., Challacombe, M., Gill, P., M., W., Johnson, B., Chen, W., Wong, M., W., Gonzalez, C., & Pople, J., A. (2009). Gaussian 09, revision A. 02, Gaussian, Inc., Wallingford CT.

Becke, A.,D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648. DOI: https://doi.org/10.1063/1.464913

Hohenberg, P., & Kohn, W. (1964). Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis. Phys. Rev. B., 136, 864.

Lee, C., Yang, W., & Parr, R., G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 37, 785. DOI: https://doi.org/10.1103/PhysRevB.37.785

Frisch, A., et al. (2009). Gaussian Inc. GaussView, Version 6.

Jamroz, M., H. (2004). Vibrational Energy Distribution Analysis, VEDA 4 Program, Warsaw, Poland.

Daina, A., Michielin, O., Zoete, V. (2017). SWISSADME online software.

Bisong, E. (2019). Google Colaboratory. Apress, Berkeley, CA. 59–64, 2019. https://doi.org/10.1007/978-1-4842-4470-8_7. DOI: https://doi.org/10.1007/978-1-4842-4470-8_7

Trott, O., & Olson, A., J. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comp. Chem., 31, 455. DOI: https://doi.org/10.1002/jcc.21334

Pople, J., A., Schlegel, H., B., Krishnan, R., Defrees, D., J., Binkley, J., S., Frisch, M., J., et al. (1981). Molecular-Orbital Studies of Vibrational Frequencies. Int. J. Quant. Chem., 20, 269. DOI: https://doi.org/10.1002/qua.560200829

Karabacak, M., Kurt, M., Cinar, M., & Coruh, A. (2009). Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6-methylaniline. Mol. Phys., 107, 253. DOI: https://doi.org/10.1080/00268970902821579

Colthup, N., B., Daly, L., H., & Wiberley, S., E. (1990). In Introduction to Infrared and Raman Spectroscopy (New York: Academic Press).

Chou, K., C. (1984). The Biological Functions of Low-Frequency Phonons. 4. Resonance Effects and Allosteric Transition. Biophys. Chem., 20, 61. DOI: https://doi.org/10.1016/0301-4622(84)80005-8

Frohlich, H. (1988). In Biological Coherence and Response to External Stimuli (Berlin: Springer). DOI: https://doi.org/10.1007/978-3-642-73309-3

Xu, Y., Chu, Q., Chen, D., & Fuentes, A. (2021). HOMO–LUMO Gaps and Molecular Structures of Polycyclic Aromatic Hydrocarbons in Soot Formation. Front. Mech. Eng., 7, 744001. DOI: https://doi.org/10.3389/fmech.2021.744001

Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747. DOI: https://doi.org/10.1126/science.218.4574.747

Fleming, I. (1976). In Frontier Orbitals and Organic Chemical Reactions: John Wiley and Sons, New York.

Sajan, D., Joseph, L., Vijayan, N., & Karabacak, M. (2011). Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of l-histidinium bromide monohydrate: A density functional theory. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 81, 85. DOI: https://doi.org/10.1016/j.saa.2011.05.052

Thomas, R., Mary, Y., S., Resmi, K., S., Narayana, B., Sarojini, S., B., K., Armakovic, S., Armakovic, S., J., Vijayakumar, G., Alsenoy, C., V., & Mohan, B., J. (2019). Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct., 1181, 599. DOI: https://doi.org/10.1016/j.molstruc.2019.01.014

Chattaraj, P., K., Sarkar, U., & Roy., D.,R. (2006). Electrophilicity Index. Chem. Rev., 106, 2065. DOI: https://doi.org/10.1021/cr040109f

Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 43, 3714. DOI: https://doi.org/10.1021/jm000942e

Murugavel, S., Ravikumar, C., Jaabil, G., Alagusundaram, P. (2019). Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel potent human topoisomerase IIα inhibitor. J. Mol. Str., 1176, 729. DOI: https://doi.org/10.1016/j.molstruc.2018.09.010

Veber, D., F., Johnson, S., R., Cheng, H., Y., Smith, B., R., Ward, K., W., & Kopple, K., D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem., 45, 2615. DOI: https://doi.org/10.1021/jm020017n

Zhao, Y., H., Le, J., Abraham, M., H., Hersey, A., Eddershaw, P., J., Luscombe, C., N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., & Platts, J., A. (2001). Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci., 90, 749. DOI: https://doi.org/10.1002/jps.1031

Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sc., 10, 195. DOI: https://doi.org/10.1016/S0928-0987(00)00076-2

Rodić, M., V., Leovac, V, M., Jovanović, L., S., Spasojević, V., Joksović, M., D., Stanojković, T., Matić, I., Z., Vojinović-Ješić, L.,S., & Marković, V. (2016). Synthesis, characterization, cytotoxicity and antiangiogenic activity of copper(II) complexes with 1-adamantoyl hydrazone bearing pyridine rings. Eur. J. Med. Chem., 115, 75. DOI: https://doi.org/10.1016/j.ejmech.2016.03.003

Lipinski, C., A., Lombardo, F., Dominy, B., W., & Feeney, P. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. J. Adv. Drug Deliv. Rev., 23, 3. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Lipinski, C., A. (2004). Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol., 1, 337. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007

Gadaleta, D., Vukovic, K., Toma, C., Lavado, G., J., Karmaus, A., L., Mansouri, K., Kleinstreuer, N., C., Benfenati, E., & Roncaglioni, A. (2019). SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J. Cheminf., 11, 58. DOI: https://doi.org/10.1186/s13321-019-0383-2

Ajay, Bemis, G., W., & Murcko, M. A. (1999). Designing Libraries with CNS Activity. J. Med. Chem., 42, 4942. DOI: https://doi.org/10.1021/jm990017w

Kumar, C., P., Raghu, M., S., Prathibha, B., S., Prashanth, M., K., Kanthimathi, G., Kumar, K., Y., Parashuram, L., & Alharthi, F., A. (2021). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorg. Med. Chem. Letters, 44, 128118. DOI: https://doi.org/10.1016/j.bmcl.2021.128118

Spackman, P., R., Turner, M., J., McKinnon, J., J., Wolff, S., K., Grimwood, D., J., Jayatilaka, D., & Spackman, M., A. (2021). Crystal Explorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallography. 54, 1006. DOI: https://doi.org/10.1107/S1600576721002910

Lange, O., F., & Grubmüller, H. (2006). Can Principal Components Yield a Dimension Reduced Description of Protein Dynamics on Long Time Scales? .J. Phys. Chem. B. 11, 22842–22852. DOI: https://doi.org/10.1021/jp062548j

Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., Gioia, L., D. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J. Mol. Graph. Model, 27:889–899. DOI: https://doi.org/10.1016/j.jmgm.2009.01.006

Valdés-Tresanco, M., S., Valdés-Tresanco, M., E., Valiente, P., A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 17, 6281. DOI: https://doi.org/10.1021/acs.jctc.1c00645

Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., & Poroikov, V. (2015). SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics., 31 (12), 2046-2048. DOI: https://doi.org/10.1093/bioinformatics/btv087

http://www.rcsb.org/pdb/explore.do?structureId=4WNT & 4XRZ.

Morris, G., M., Huey, R., Lindstrom, W., Sanner, M., F., Belew, R., K., Goodsell, D., S., & Olson, A., J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 16, 2785. DOI: https://doi.org/10.1002/jcc.21256

Schrödinger, L.; DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol.

Jevtovic, V., Alshamari, A., K., Milenkovic, D., Dimitrić Marković, J., Marković, Z., & Dimić, D. (2023). The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int. J. Mol. Sci., 24, 11910. DOI: https://doi.org/10.3390/ijms241511910

Downloads

Published

10-08-2025

Issue

Section

Research Articles

How to Cite

[1]
Tanveer Hasan, “Computational exploration, Hirshfeld Surface Analysis, Molecular Dynamics Simulation, ADMET Profiles, and Molecular Docking of 3a,8a-Dihydroxy-1-phenyl-1,3, 3a,8a-tetrahydro-indeno[1,2-d] imidazole-2,8-dione”, Int J Sci Res Sci Eng Technol, vol. 12, no. 4, pp. 309–327, Aug. 2025, doi: 10.32628/IJSRSET2512514.